ML et IA

15 métriques d'apprentissage automatique populaires pour les scientifiques de données

15 métriques d'apprentissage automatique populaires pour les scientifiques de données

L'apprentissage automatique est l'un des sujets les plus étudiés des deux dernières décennies. Il n'y a pas de fin aux besoins humains. Mais leur production et leur capacité de travail sont limitées. C'est pourquoi le monde évolue vers l'automatisation. Le Machine Learning a un rôle énorme dans cette révolution industrielle. Les développeurs créent chaque jour des modèles et des algorithmes de ML plus robustes. Mais vous ne pouvez pas simplement lancer votre modèle en production sans l'évaluer. C'est là qu'interviennent les métriques d'apprentissage automatique. Les scientifiques des données utilisent ces métriques pour mesurer la qualité des prédictions d'un modèle. Vous devez avoir une bonne idée d'eux. Pour faciliter votre parcours de ML, nous énumérerons les métriques d'apprentissage automatique les plus populaires que vous pouvez apprendre pour devenir un meilleur data scientist.

Métriques d'apprentissage automatique les plus populaires


Nous supposons que vous connaissez bien les algorithmes de Machine Learning. Si vous ne l'êtes pas, vous pouvez consulter notre article sur les algorithmes de ML. Passons maintenant en revue les 15 métriques d'apprentissage automatique les plus populaires que vous devriez connaître en tant que data scientist.

01. Matrice de confusion


Les data scientists utilisent la matrice de confusion pour évaluer les performances d'un modèle de classification. C'est en fait un tableau. Les lignes représentent la valeur réelle, tandis que les colonnes expriment la valeur prédite. Étant donné que le processus d'évaluation est utilisé pour les problèmes de classification, la matrice peut être aussi grande que possible. Prenons l'exemple pour mieux le comprendre.

Supposons qu'il y ait un total de 100 images de chats et de chiens. Le modèle a prédit que 60 d'entre eux étaient des chats, et 40 d'entre eux n'étaient pas des chats. Cependant, en réalité, 55 d'entre eux étaient des chats et les 45 autres étaient des chiens. En supposant que les chats soient positifs et les chiens négatifs, nous pouvons définir quelques termes importants.

02. Précision de la classification


C'est le processus le plus simple pour évaluer un modèle. Nous pouvons le définir comme le nombre total de prédictions correctes divisé par le nombre total de valeurs d'entrée. Dans le cas de la matrice de classification, cela peut être dit comme le rapport de la somme de TP et TN au nombre total d'entrées.

Par conséquent, la précision dans l'exemple ci-dessus est (50+35/100), je.e., 85%. Mais le processus n'est pas toujours efficace. Cela peut souvent donner des informations erronées. La métrique est plus efficace lorsque les échantillons de chaque catégorie sont presque égaux.

03. Précision et rappel


La précision ne fonctionne pas toujours bien. Il peut donner des informations erronées en cas de distribution inégale de l'échantillon. Nous avons donc besoin de plus de métriques pour évaluer correctement notre modèle. C'est là qu'interviennent la précision et le rappel. La précision correspond aux vrais positifs par rapport au nombre total de positifs. Nous pouvons savoir dans quelle mesure notre modèle réagit en découvrant les données réelles.

La précision de l'exemple ci-dessus était de 50/60, je.e., 83.33%. Le modèle réussit bien à prédire les chats. D'autre part, le rappel est le rapport des vrais positifs à la somme d'un vrai positif et d'un faux négatif. Le rappel nous montre à quelle fréquence le modèle prédit cat dans l'exemple suivant.

Le rappel dans l'exemple ci-dessus est 50/55, je.e., 90%. Dans 90 % des cas, le modèle est effectivement correct.

04. Score F1


Il n'y a pas de fin à la perfection. Rappel et précision peuvent être combinés pour obtenir une meilleure évaluation. C'est le score F1. La métrique est essentiellement la moyenne harmonique de précision et de rappel. Mathématiquement, il peut s'écrire ainsi :

D'après l'exemple chat-chien, le score F1 est de 2*.9*.8/(.9+.8), je.e., 86%. C'est beaucoup plus précis que la précision de la classification et l'une des métriques d'apprentissage automatique les plus populaires. Cependant, il existe une version généralisée de cette équation.

En utilisant la version bêta, vous pouvez donner plus d'importance au rappel ou à la précision ; dans le cas d'une classification binaire, beta=1.

05. Courbe ROC


La courbe ROC ou simplement la courbe des caractéristiques de l'opérateur récepteur nous montre comment fonctionne notre modèle pour différents seuils. Dans les problèmes de classification, le modèle prédit certaines probabilités. Un seuil est alors fixé. Toute sortie supérieure au seuil est 1 et inférieure à 0. Par example, .2, .4,.6, .8 sont quatre sorties. Pour seuil .5 la sortie sera 0, 0, 1, 1 et pour seuil .3 ce sera 0, 1, 1, 1.

Différents seuils produiront différents rappels et précisions. Cela finira par changer le taux vrai positif (TPR) et le taux faux positif (FPR). La courbe ROC est le graphique tracé en prenant TPR sur l'axe des y et FPR sur l'axe des x. La précision nous donne des informations sur un seul seuil. Mais ROC nous donne beaucoup de seuils parmi lesquels choisir. C'est pourquoi le ROC est meilleur que la précision.

06. ASC


L'aire sous la courbe (AUC) est une autre mesure d'apprentissage automatique populaire. Les développeurs utilisent le processus d'évaluation pour résoudre les problèmes de classification binaire. Vous connaissez déjà la courbe ROC. AUC est l'aire sous la courbe ROC pour diverses valeurs seuils. Cela vous donnera une idée de la probabilité que le modèle choisisse l'échantillon positif sur l'échantillon négatif.

L'ASC varie de 0 à 1. Étant donné que FPR et TPR ont des valeurs différentes pour différents seuils, l'AUC diffère également pour plusieurs seuils. Avec l'augmentation de la valeur AUC, les performances du modèle augmentent.

07. Perte de journal


Si vous maîtrisez le Machine Learning, vous devez connaître la perte de journaux. C'est une métrique d'apprentissage machine très importante et très populaire. Les gens utilisent le processus pour évaluer des modèles ayant des résultats probabilistes. La perte de log augmente si la valeur prévue du modèle s'écarte beaucoup de la valeur réelle. Si la probabilité réelle est .9 et la probabilité prédite est .012, le modèle aura une énorme perte de log. L'équation de calcul de la perte de log est la suivante :

Où,

A partir du graphique, nous remarquons que la perte diminue avec l'augmentation des probabilités. Cependant, il augmente avec une probabilité plus faible. Les modèles idéaux ont 0 perte de log.

08. Erreur absolue moyenne


Jusqu'à présent, nous avons discuté des métriques d'apprentissage automatique populaires pour les problèmes de classification. Nous allons maintenant discuter des métriques de régression. L'erreur absolue moyenne (MAE) est l'une des métriques de régression. Dans un premier temps, la différence entre la valeur réelle et la valeur prédite est calculée. Alors la moyenne des absolus de ces différences donne la MAE. L'équation pour MAE est donnée ci-dessous:

Où,

Plus l'erreur est faible, meilleur est le modèle. Cependant, vous ne pouvez pas connaître la direction de l'erreur en raison des valeurs absolues.

09. Erreur quadratique moyenne


L'erreur quadratique moyenne ou MSE est une autre métrique ML populaire. La majorité des data scientists l'utilisent dans des problèmes de régression. Comme MAE, vous devez calculer la différence entre les valeurs réelles et les valeurs prédites. Mais dans ce cas, les différences sont au carré, et la moyenne est prise. L'équation est donnée ci-dessous :

Les symboles indiquent la même chose que MAE. MSE est meilleur que MAE dans certains cas. MAE ne peut montrer aucune direction. Il n'y a pas un tel problème dans MSE. Ainsi, vous pouvez facilement calculer le gradient en l'utilisant. MSE a un rôle énorme dans le calcul de la descente de gradient.

dix. Erreur quadratique moyenne


Celui-ci est peut-être la métrique d'apprentissage automatique la plus populaire pour les problèmes de régression. Root Mean Squared Error (RMSE) est essentiellement la racine carrée de MSE. C'est presque similaire à MAE sauf pour la racine carrée, ce qui rend l'erreur plus précise. L'équation est :

Pour le comparer avec MAE, prenons un exemple. Supposons qu'il y ait 5 valeurs réelles 11, 22, 33, 44, 55. Et les valeurs prédites correspondantes sont 10, 20, 30, 40, 50. Leur MAE est de 3. D'autre part, le RMSE est de 3.32, qui est plus détaillé. C'est pourquoi RMSE est plus préférable.

11. R-carré


Vous pouvez calculer l'erreur à partir du RMSE et du MAE. Cependant, la comparaison entre les deux modèles n'est pas exactement pratique en les utilisant. Dans les problèmes de classification, les développeurs comparent deux modèles avec précision. Vous avez besoin d'une telle référence dans les problèmes de régression. R-carré vous aide à comparer les modèles de régression. Son équation est la suivante :

Où,

La plage de R-carré va de l'infini négatif à 1. La valeur plus élevée de l'évaluation signifie que le modèle s'adapte bien.

12. R-carré ajusté


R-Squared a un inconvénient. Il n'agit pas bien lorsque de nouvelles fonctionnalités sont ajoutées au modèle. Dans ce cas, parfois la valeur augmente, et parfois elle reste la même. Cela signifie que R-Squared ne se soucie pas de savoir si la nouvelle fonctionnalité a quelque chose pour améliorer le modèle. Cependant, cet inconvénient a été supprimé dans le R-Squared ajusté. La formule est : Où,

Dans R-Squared Adjusted, la valeur n'augmente que si la nouvelle fonctionnalité améliore le modèle. Et comme nous le savons, la valeur plus élevée de R-Squared signifie que le modèle est meilleur.

13. Mesures d'évaluation de l'apprentissage non supervisé


Vous utilisez généralement l'algorithme de clustering pour un apprentissage non supervisé. Ce n'est pas comme une classification ou une régression. Le modèle n'a pas d'étiquettes. Les échantillons sont regroupés en fonction de leurs similitudes et dissemblances. Pour évaluer ces problèmes de clustering, nous avons besoin d'un type différent de métrique d'évaluation. Le coefficient de silhouette est une métrique d'apprentissage machine populaire pour les problèmes de clustering. Cela fonctionne avec l'équation suivante :

Où,

Le coefficient de silhouette d'un groupe d'échantillons est pris comme la moyenne de leurs coefficients individuels. Il va de -1 à +1. +1 signifie que le cluster a tous les points des mêmes attributs. Plus le score est élevé, plus la densité de cluster est élevée.

14. MRR


Comme la classification, la régression et le clustering, le classement est également un problème d'apprentissage automatique. Le classement répertorie un groupe d'échantillons et les classe en fonction de certaines caractéristiques particulières. Vous voyez régulièrement cela dans Google, répertoriant les e-mails, YouTube, etc. De nombreux scientifiques des données font du classement réciproque moyen (MRR) leur premier choix pour résoudre les problèmes de classement. L'équation de base est :

Où,

L'équation nous montre à quel point le modèle classe les échantillons. Cependant, il a un inconvénient. Il ne considère qu'un attribut à la fois pour lister les éléments.

15. Coefficient de détermination (R²)


L'apprentissage automatique contient une énorme quantité de statistiques. De nombreux modèles ont spécifiquement besoin de métriques statistiques pour évaluer. Le coefficient de détermination est une métrique statistique. Il indique comment la variable indépendante affecte la variable dépendante. Les équations pertinentes sont :

Le modèle fonctionne mieux lorsque =1. Si le modèle prédit la valeur moyenne des données, sera 0.

Dernières pensées


Seul un imbécile mettra son modèle en production sans l'évaluer. Si vous voulez être un data scientist, vous devez connaître les métriques de ML. Dans cet article, nous avons répertorié les quinze métriques de Machine Learning les plus populaires que vous devez connaître en tant que data scientist. Nous espérons que vous comprenez maintenant les différentes métriques et leur importance. Vous pouvez appliquer ces métriques en utilisant Python et R.

Si vous étudiez attentivement l'article, vous devriez être motivé pour apprendre à utiliser des métriques de ML précises. Nous avons fait notre travail. Maintenant, c'est à votre tour d'être un data scientist. L'erreur est humaine. Il peut y avoir des manques dans cet article. Si vous en trouvez, vous pouvez nous le faire savoir. Les données sont la nouvelle monnaie mondiale. Alors, utilisez-le et gagnez votre place dans le monde.

Comment installer League Of Legends sur Ubuntu 14.04
Si vous êtes fan de League of Legends, alors c'est l'occasion pour vous de tester League of Legends. Notez que LOL est pris en charge sur PlayOnLinux ...
Installez le dernier jeu de stratégie OpenRA sur Ubuntu Linux
OpenRA est un moteur de jeu de stratégie en temps réel libre/gratuit qui recrée les premiers jeux Westwood comme le classique Command & Conquer: Red A...
Installez le dernier émulateur Dolphin pour Gamecube et Wii sur Linux
L'émulateur Dolphin vous permet de jouer aux jeux Gamecube et Wii de votre choix sur des ordinateurs personnels Linux (PC). Étant un émulateur de jeu...